home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Pascal Super Library
/
Pascal Super Library (CW International)(1997).bin
/
MATH
/
MATH1
/
GAUSID.PAS
< prev
next >
Wrap
Pascal/Delphi Source File
|
1985-04-03
|
3KB
|
179 lines
program gausid; { -> 129 }
{ pascal program to perform simultaneous solution }
{ by Gauss-Seidel }
{ procedure SEID is included }
const maxr = 8;
maxc = 8;
type ary = array[1..maxr] of real;
arys = array[1..maxc] of real;
ary2s = array[1..maxr,1..maxc] of real;
var y : ary;
coef : arys;
a : ary2s;
n,m : integer;
first,
error : boolean;
external procedure cls;
procedure get_data
(var a : ary2s;
var y : ary;
var n,m: integer);
{ get values for n and arrays a,y }
var i,j : integer;
begin
writeln;
repeat
write('How many equations? ');
readln(n);
if first then first:=false else cls
until n<maxr;
m:=n;
if n>1 then
begin
for i:=1 to n do
begin
writeln('Equation',i:3);
for j:=1 to n do
begin
write(j:3,':');
read(a[i,j])
end;
write(' C:');
read(y[i]);
readln { clear the line }
end;
writeln;
for i:=1 to n do
begin
for j:=1 to m do
write(a[i,j]:7:4,' ');
writeln(':',y[i]:7:4)
end;
writeln
end { if n>1 }
else if n<0 then n:=-n;
m:=n
end; { procedure get_data }
procedure write_data;
{ print out the answers }
var i : integer;
begin
for i:=1 to m do
write(coef[i]:9:5);
writeln
end; { write_data }
procedure seid
(a : ary2s;
y : ary;
var coef: arys;
ncol : integer;
var error: boolean);
{ matrix solution by Gauss Seidel }
const tol = 1.0E-4;
max = 100;
var done : boolean;
i,j,k,l,n: integer;
nextc,hold,
sum,lambda,
ab,big : real;
begin
repeat
write('Relaxation factor? ');
readln(lambda)
until (lambda<2) and (lambda>0.0);
error:=false;
n:=ncol;
for i:=1 to n-1 do
begin
big:=abs(a[i,i]);
l:=i;
for j:=i+1 to n do
begin
{ search for largest element }
ab:=abs(a[j,i]);
if ab>big then
begin
big:=ab;
l:=j
end
end; { j-loop }
if big=0.0 then error:=true
else
begin
if l<>i then
begin
{ interchange rows to put }
{ largest element on diagonal }
for j:=1 to n do
begin
hold:=a[l,j];
a[l,j]:=a[i,j];
a[i,j]:=hold
end;
hold:=y[l];
y[l]:=y[i];
y[i]:=hold
end { if l<>i }
end { if big }
end; { i-loop }
if a[n,n]=0.0 then error:=true
else
begin
for i:=1 to n do
coef[i]:=0.0; { initial guess }
i:=0;
repeat
i:=i+1;
done:=true;
for j:=1 to n do
begin
sum:=y[j];
for k:=1 to n do
if j<>k then
sum:=sum-a[j,k]*coef[k];
nextc:=sum/a[j,j];
if abs(nextc-coef[j])>tol then
begin
done:=false;
if nextc*coef[j]<0.0 then
nextc:=(coef[j]+nextc)*0.5
end;
coef[j]:=lambda*nextc+(1.0-lambda)*coef[j];
writeln(i:4,',coef(',j,')=',coef[j])
end { j-loop }
until done or (i>max)
end; { if a[n,n]=0 }
if i>max then error:=true;
if error then writeln('ERROR: Matrix is singular')
end; { SEID }
begin { MAIN program }
first:=true;
cls;
writeln;
writeln('Simultaneous solution by Gauss-Seidel');
repeat
get_data(a,y,n,m);
if n>1 then
begin
seid(a,y,coef,n,error);
if not error then write_data
end
until n<2
end.